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Noise can delay and advance the collapse of spatiotemporal chaos
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Spatiotemporal chaos on a regular ring network of excitable Gray-Scott dynamical elements collapses to a
stable asymptotic state. We find that the addition of dynamical noise clearly influences the spatiotemporal
pattern and the transient lifetime of spatiotemporal chaos. Spatially uniform noise significantly decreases the
average lifetime of spatiotemporal chaos due to an enlargement of regions of local collapse. For spatially
inhomogeneous noise the collapse is maximally delayed at an intermediate noise level, but drastically advanced

for larger noise levels.
DOI: 10.1103/PhysRevE.75.066209
I. INTRODUCTION

Transient spatiotemporal chaos is a common phenomenon
in extended nonequilibrium systems across several disci-
plines. In the absence of external perturbations, complex spa-
tiotemporal dynamics changes spontaneously from chaotic to
steady state or periodic behavior. In contrast to low-
dimensional systems where a chaotic repellor is known to
govern transient chaos [1], the mechanistic understanding of
the collapse in extended systems remains elusive. Transient
spatiotemporal chaos has been reported in models for turbu-
lent dynamics [2], for semiconductor charge transport [3], for
CO oxidation on single-crystal Pt surfaces [4], for a cubic
autocatalytic mass-action model [5], and in systems of
coupled logistic maps [6,7]. In addition, spatiotemporal com-
plexity with irregular dynamics and fast decaying correla-
tions but a negative maximum Lyapunov exponent (“stable
chaos”) was found to be transient in systems of coupled one-
dimensional maps [8,9]. Transient spatiotemporal chaos was
also discussed as a mechanism for species extinction in ecol-
ogy [10,11], motivated from the hypothesis that transient dy-
namics in ecological models might be more relevant for real
systems than long-term model behavior [12].

The asymptotic stability of chaotic dynamics in extended
systems is difficult to determine, since transient spatiotempo-
ral chaos may be extremely long lived; its average lifetime
typically increases exponentially with the size of the medium
[3-5,9,13]. Noise and nonlocal coupling may further influ-
ence the collapse process in realistic systems, which en-
hances the difficulties in determining the asymptotic stability.
For transient chaos in the Gray-Scott reaction-diffusion net-
work it was demonstrated that (1) the addition of two or
more nonlocal couplings in the network can make transient
spatiotemporal chaos asymptotic [14], and that (2) introduc-
ing resource competition into the model causes species-
segregation that prevents the collapse of spatiotemporal
chaos [15].

The study of noise effects is fundamental to the under-
standing of realistic complex spatiotemporal behavior. The
variety of noise-induced dynamical phenomena in extended
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systems is huge [16,17], including noise-supported traveling
waves [ 18], noise-sustained coherent oscillations [19], noise-
mediated synchronization [20], and noise-induced attractor
switching [21]. In systems with spatiotemporal chaos, noise
causes merging of turbulent waves [22], and noise enhances
the creation and annihilation of topological defects [23].

Very few studies have addressed the collapse of spa-
tiotemporal chaos in the presence of noise so far. From the
robustness of the transient times in a noisy diffusively
coupled logistic map lattice, Lai concludes for his model that
the presence of noise is not advantageous in attempts to re-
duce the transient lifetime [24]. Even in low-dimensional
systems, where the collapse mechanism for transient chaos is
mathematically understood [1], the effects of noise are less
clear, and the findings range from a reduction of the lifetime
[25], to robustness against noise [26], to prolonged lifetimes
in a post-crisis parameter regime [27].

In this paper we report that additive noise clearly affects
the collapse of spatiotemporal chaos in a regular ring net-
work of Gray-Scott excitable elements. The model is intro-
duced in Sec. II. In Sec. III we demonstrate that spatially
homogeneous dichotomous Markov noise advances the col-
lapse and we discuss the responsible patterns in the noise
realizations. In Sec. IV we show that spatially inhomoge-
neous noise can delay and advance the collapse process, de-
pending on the amplitude of the noise.

II. THE MODEL

The (network) model consists of N diffusively coupled,
identical, continuous-time dynamical elements. The excitable
dynamics at each network node n (n=1,2,...,N), is given
by the two-variable Gray-Scott model [28], which describes
an open, autocatalytic reaction: A+2B—3B and B—C. A
represents the reactant (resource), B the autocatalytic species,
and C the final product. This reaction at every node n is
modeled by the following coupled dimensionless differential
equations:

d
afl[n =1- a, — IL'Lal’lbﬁ + DAn(an)s
db, ,
5 = Hanby = @b, + DA(b,) + 08, f(nr). (1)

a, and b, are the dimensionless concentrations of resource A
and species B at node n. ® and w are the bifurcation param-
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eters, determined by the rate constants and the reactant con-
centration in the reservoir. Diffusive coupling A, () with cou-
pling strength D is assumed for both reaction variables, using
An(xn) =Xpe1 X —2)6”.

Species concentration b, at node n is perturbed with ad-
ditive dynamical noise with noise amplitude Q and zero
mean. For dichotomous Markov noise, the random variable
&, is uniformly distributed in the set &, , € {—1, 1}, such that
the noise distribution for Q,, is given by h(Q¢,,)
=3[8(£,,~0)+8(¢,,+0)]. The function f(n,r)=(t)X(n)
determines the time ¢ and the location n for adding noise in
the network [Eq. (1)]. Noise is added every , time units,
m1)=6,x,, and i=1,2,.... For spatially homogeneous
noise the same random perturbation is added at every net-
work node, i.e., &, X(n)=§& . For spatially inhomogeneous
noise every network node is perturbed, but the network is
divided into r regimes such that N/r neighboring nodes
are perturbed with the same noise event. Then, &, ,X(n)
=&;101 0(n-[(-)NRO[(iN—n]» With O() the Heaviside func-
tion and j=1,2,...,r. The degree of spatial inhomogeneity
of the noise is controlled by r, with r=1 corresponding to
spatially homogeneous noise, and r=2 corresponding to one
noise realization in every half of the network.

In the absence of coupling (D=0) and in the absence of
noise (Q=0) in Eq. (1), the dynamics at a network node is
characterized by three steady states,

§"=(1,0),

oo ( 1-\1-4d%u 1+41 —4c1>2/M>
B 2 ’ 20 ’

o (1 +V1 -4 1-1- 4¢>2/M>
- 2 ’ 20 '

Linear stability analysis shows that S” is a stable node for all
parameter values w and ®. S/ is an unstable focus, and S* is
a saddle point, which exist for w above the saddle node bi-
furcation point, wu,,=4®>. In the range 2<®<4, § be-
comes a stable focus above the subcritical Hopf bifurcation
point, uy=®*/(®—-1). In the parameter regime of interest
[ sn» pp] and ®=2.8 the dynamical system at each node is
excitable.

Earlier studies have shown that the network dynamics on
a regular ring network [Eq. (1)] exhibits transient spatiotem-
poral chaos in the absence of noise (Q=0) [5]. After a re-
gime of sustained spatiotemporal chaos with a rapid decay of
spatial correlations and a positive largest Lyapunov expo-
nent, the system exhibits a spontaneous, intrinsic collapse to
the homogeneous stable steady state S” with extinct species.
The average lifetime of transient spatiotemporal chaos in-
creases exponentially with the size of the network N [5].
During the transient phase the spatiotemporally chaotic dy-
namics was characterized by a Silnikov-like orbit that con-
sists of a heteroclinic connection from the unstable focus S/
to the stable node §" in the homogeneous system and a het-
eroclinic connection from S" to § for the traveling wave
system [29,30]. A typical trajectory at a network node spirals
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FIG. 1. Characteristic phase portrait for Eq. (1) with system
parameters u=33.7, ®=2.8, D=16 [31], and Q=0. The dashed line
marks a distance d=0.3 to the unstable focus.

away from the unstable focus toward the stable node, only to
be reinjected to the unstable focus via the propagating
reaction-diffusion activity (Fig. 1). The parameter range
[tte» puyy] for wave-induced spatiotemporal chaos is deter-
mined by the critical threshold for traveling wave solutions
M. and the Hopf bifurcation point wy, with w.=~33 for ®
=2.8 [29].

The spatiotemporal pattern during the transient phase is
characterized by an irregular distribution of local extinct re-
gions, in which trajectories of neighboring network nodes
approach the stable steady state S” of the homogeneous sys-
tem together [29]. The triangular shape of these local extinc-
tions [[5], similar to Fig. 8(a)], where species B is extinct
(b=0) and resource A recovers to its maximum value (a
=1), is due to the propagation of species B into these regions
of high resource concentration A from both sides. The col-
lapse of spatiotemporal chaos is preceded by a quasihomo-
geneous spatial state (basin for immediate extinction in [5])
in which the perturbations that normally initiate reaction-
diffusion fronts and thus sustain spatiotemporal chaos are
subthreshold. The trajectories throughout the network follow
closely the heteroclinic connection from the unstable focus
to the stable node, and the system reaches its stable, spatially
homogeneous asymptotic state.

In all simulations in this paper, the noise amplitude Q was
chosen clearly below the excitation threshold of the Gray-
Scott dynamics to explore noise-induced changes of the col-
lapse dynamics and to avoid noise-induced excitation of the
entire network dynamics.

III. THE COLLAPSE OF SPATIOTEMPORAL CHAOS
IN THE PRESENCE OF SPATIALLY HOMOGENEOUS
NOISE

Spatially uniform dichotomous Markov noise signifi-
cantly decreases the average lifetime of spatiotemporal chaos
(Fig. 2) for all noise amplitudes Q. The upper limit for Q,
0=0.01 was chosen to ensure that noise provides only sub-
critical perturbations to the stable rest state S”, i.e., a single
noise event cannot reexcite the system by itself. Above a
certain noise threshold, Q> 107%, the collapse of spatiotem-
poral chaos is strongly advanced, and the average transient
time (7T) follows a power law decay for the larger network
sizes, N=140 and N=160. For the small network size, N
=120, a power law exists only approximately. For Q <107*
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FIG. 2. Average transient lifetime (7) as a function of noise
amplitude Q for different network sizes, N=120 (<), N=140 (OJ),
and N=160 (%). Spatially homogeneous dichotomous Markov
noise with zero mean was added every 7,=0.15 time units to the
species concentration b in Eq. (1). Control calculations show that
(T) is robust when adding noise to the resource concentration a,
instead. Each data point was determined from 103 simulations, us-
ing 100 different random initial conditions for spatiotemporal chaos
and 10 noise realizations for each initial condition. The horizontal
lines show the average transient time for 100 random initial condi-
tions in the absence of noise. The error bar (1 standard deviation,
not plotted here) for each data point is of the order of (7). For each
simulation reactant A is initially distributed homogeneously (a=1)
over the entire network, and species B is randomly seeded with an
initial concentration of b=1. Equation (1) was integrated with an
explicit Euler method, a numerical time step of dr=0.0003, and
periodic boundary conditions; the system parameters are w=33.7,
®=2.8, and D=16 [31].

the average transient time (7) also decreases with noise am-
plitude Q, but it follows more an exponential decay. The
change in the strength of the decay in the neighborhood of
Q=107*is independent of the network size, which points to
its origin in the interaction of the noise with the local dynam-
ics at each network node, and not to a global network phe-
nomenon. The statistical robustness of the average transient
lifetime was demonstrated in control simulations for various
noise amplitudes Q [32]. In Fig. 2 noise was added every
to=0.15 time units, which is small in comparison to the typi-
cal time scale of the system given by the excitation cycle. A
variation of 7, does not qualitatively change the noise-
advanced collapse phenomenon in Fig. 2, but reveals that the
average transient lifetime decreases with decreasing 7, [33].

On a regular ring network of Gray-Scott excitable ele-
ments the lifetime of spatiotemporal chaos increases expo-
nentially with the network size N [5]. Figure 3 shows for a
representative noise amplitude (Q=0.001) that the exponen-
tial dependence persists in the presence of homogeneous di-
chotomous noise, but the increase is reduced in comparison
to the noise-free case. Such an exponential increase of the
average lifetime with medium size appears to be character-
istic for various other noise-free diffusively coupled systems
[3,4,9,13,14], its origin, however, remains elusive.

A statistical analysis of the transient lifetimes for different
initial conditions and different noise realizations shows an
exponential frequency distribution in the absence of noise
and also in the presence of homogeneous dichotomous noise
[Figs. 4(a) and 4(b)]. For a network of N=120 nodes the
simulations yield a noise-free distribution that is character-
ized by a maximum transient lifetime of 7=11 116 and an
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FIG. 3. Average transient lifetime (7) versus number of network
nodes N in the absence of noise Q=0 (<) and in the presence of
spatially homogeneous dichotomous Markov noise with noise am-
plitude 0=0.001 (A). The full lines show “robust least absolute
deviation” fits of the average transient lifetimes. All the other pa-
rameters and simulation procedures are the same as in Fig. 2.

average transient time of (7)=1688+1710. The distribution
in the presence of noise (Q=0.001) is characterized with a
clearly reduced maximum transient time 7=2129 and aver-
age transient time (T)=268+254. The statistical analysis fur-
ther reveals that not every noise realization is reducing the
lifetime of spatiotemporal chaos, although the average tran-
sient lifetime is clearly reduced. Above a certain noise am-
plitude (Q=0.001 for N=140), however, our simulations
show an advanced collapse of spatiotemporal chaos for all
noise realizations.

Spatiotemporal chaos on a regular ring network [Egs. (1)]
is characterized by an irregular distribution of local extinct
regions in space and time, in which neighboring trajectories
collapse to the stable rest state S". First insight into the
mechanistic role of noise for transient spatiotemporal chaos
is gained from a statistical analysis of the sizes of local ex-
tinction. It reveals that noise causes more and larger regions
of local extinction (Fig. 5). During a simulation time of
75 000 the spatiotemporal dynamics exhibits 5718 local ex-
tinctions with an average size of (s)=1105+1287 in the

01000 T 0.1000 T
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0.0001 S mHHHHHH 0.0001 ‘ HHHHM
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FIG. 4. Distribution of scaled transient lifetimes 7 for a network
with N=120 nodes in the (a) absence of noise (Q=0) and in the (b)
presence of homogeneous dichotomous noise with amplitude Q
=0.001. The range of transient times was divided into 100 bins,
starting with 7=0 and ending with the maximum observed transient
time, 7=11116 in (a) and T=2129 in (b). The average transient
time (7), marked with a vertical line, is (T)=1688+1710 in (a) and
(T)=268+254 in (b). The histogram in (a) was generated from 2000
numerical simulations with different random initial conditions, and
the histogram in (b) was generated from 10 000 simulations with
100 different random initial conditions and 100 noise realizations
for each initial condition. All the other parameters are the same as
in Fig. 2.
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FIG. 5. Size distribution of local extinctions (triangular patches
in the spatiotemporal pattern [5]) in the absence of noise (a) and in
the presence of homogeneous noise [(b), 0=0.001]. A local extinc-
tion was defined by a¢>0.8, and an increased network size, N
=600, was chosen to guarantee statistical significance of the distri-
bution. The simulation time for both figures was 75 000 time units,
resulting in 5718 clusters with an average size of (s)
=1105+1287 pixels in (a), and 11437 clusters with (s)
=1848+3488 pixels in (b). For all the other parameters see Fig. 2.

noise-free case [Fig. 5(a)], 7859 local extinctions with an
average size of (s)=1291+1871 in the presence of dichoto-
mous noise with amplitude 0=0.0005, and 11 437 local ex-
tinctions with an average size of (s)=1848+3488 for a noise
amplitude of 0=0.001 [Fig. 5(b)]. More and larger regions
of local extinction have competing consequences for the life-
time of spatiotemporal chaos. The noise-induced trend for
larger regions of local extinction [Fig. 5(b)] favors the global
collapse of spatiotemporal chaos by increasing the chance for
an extinction of the size of the network. More local extinc-
tions, however, hinder the global collapse of spatiotemporal
chaos, since the presence of a local extinction anywhere in
the network prevents the collapse of spatiotemporal chaos in
the entire network by triggering superthreshold perturbations
(i.e., excitations) at the boundary of the local extinction [5].
These superthreshold perturbations also prevent the merging
of local extinctions to a global extinction.

Insight into the origin of noise-mediated larger (and more
frequent) regions of local extinction is gained from studying
the distance of a typical trajectory to the unstable focus §'
(Fig. 1). It follows that the average time interval (residence
time) between a trajectory’s successive approaches to the
stable node S” is clearly reduced for increasing noise ampli-
tude. For example, the average time of a typical trajectory in
the neighborhood of §' until it reaches a distance d=0.3 to
the unstable focus (Fig. 1) is 160+151 in the absence of
noise, 98+93 for 0=0.001, and 48+46 for Q=0.002. This
result in coupled Gray-Scott excitable elements is consistent
with earlier findings in one-dimensional maps, where dy-
namical noise also decreases the average residence time of a
trajectory in the neighborhood of an unstable steady state
[34]. Since a typical trajectory under noise reaches a certain
distance to the unstable focus (d=0.3 in Fig. 1) faster in
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FIG. 6. Dependence of the average transient lifetime (7) on the
length scale / of the dichotomous perturbation. For periodic di-
chotomous perturbations (%) the length scale is [=p/2 with p the
period of the perturbation; for restricted dichotomous noise (CJ) the
length scale / represents the maximum distance of a random walker
from the origin after k steps, I>Ef21§1,i with keN and §;
e {-1,1}. The amplitude of the perturbation is 9=0.002, and the
size of the network is N=140. The full horizontal line shows the
average transient time in the absence of perturbations, and the dot-
ted line shows the average transient time in the presence of dichoto-
mous Markov noise (from Fig. 2). All the other parameters are
given in Fig. 2.

time, and since every trajectory in the network experiences
the same noise realization, it is more likely that a larger
number of neighboring trajectories reach a certain distance to
S/ together, which is most advantageous for an immediate
local or global extinction to occur. As shown in [5] for the
noise-free system, spatiotemporal configurations with most
of the trajectories a distance d~0.1 away from S/ experience
an immediate collapse of spatiotemporal chaos, rather inde-
pendent of the phase of individual trajectories relative to S’
Since subsequences in the noise realizations with predomi-
nantly positive (or negative) events often move a trajectory
away from §' on either side, and since noise is spatially
homogeneous over the network, such noise patterns act as a
driver for all the trajectories to reach a sufficient distance to
S/ to immediately approach the stable node S", following
closely the heteroclinic connection from S/ to $” in the ho-
mogeneous system [29].

To test for such favorable noise patterns that act as a
driver for the spatiotemporal system to reach extinction, the
sequences of dichotomous noise events are manipulated for a
fixed noise amplitude, and the consequences for the lifetime
of transient spatiotemporal chaos are determined. Figure 6
shows the average transient lifetime for homogeneous di-
chotomous noise, constrained by various length scales [. [
represents the maximum distance of a random walker from
the origin after k steps, E;I:’l‘glyisl with ke N and & ;e
{~1,1}. The average transient time in Fig. 6 is rather robust
for length scales [>2, and its value is close to the case of
unrestricted noise. Reducing / from /=2 to /=1 clearly in-
creases the average lifetime to an intermediate value between
the noise-free case and the unrestricted noise case. [=2 (I
=1) allows at most four (two) successive noise events with
the same sign. This dependence of the collapse on the length
scale [ confirms that noise sequences that are dominated by
either positive or negative noise events cause the advance-
ment of the collapse process, because such noise patterns
also move the trajectories a sufficient distance away from S/
on either side to initiate the collapse [33].
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FIG. 7. Average transient time (7T) versus noise amplitude Q for
spatially inhomogeneous dichotomous noise. Noise is added at ev-
ery location in the network (N=120). The degree of spatial noise
inhomogeneity decreases from r=20 (%), to r=4 (<), to spatially
homogeneous noise for which r=1 (OJ). The horizontal line marks
the average transient time in the absence of noise. For other dy-
namical, numerical, and statistical parameter values see Fig. 2.

Since subsequences with />0 are present in other types
of stochastic processes, we expect that uniform white noise,
Gaussian white noise, or various colored noise realizations
will also advance the collapse of spatiotemporal chaos. It
further suggests that even periodic perturbations will ad-
vance the collapse process. Figure 6 shows the average tran-
sient time versus / for periodic dichotomous perturbations,
where [ is defined as /=p/2 with p the period of the pertur-
bation. For /=4 the average transient times for the periodic
and the stochastic dichotomous perturbations do not differ.
Periodic perturbations with /=<2, however, clearly delay the
collapse of spatiotemporal chaos as seen from Fig. 6 for a
network size of N=140 and from control calculations for N
=160. A more detailed analysis shows that trajectories under
periodic perturbations with small periods escape on average
slower from the immediate neighborhood of the unstable fo-
cus § than trajectories with no perturbations. For example,
the average residence time of a typical trajectory in the
neighborhood of §' (d=0.3, Fig. 1) is 160+ 151 for Q=0, but
179+152 for periodic perturbations with /=1 and 0=0.002.
Thus periodic perturbations with small periods can hinder a
trajectory to reach a certain distance to § and by this delay
the collapse process.

IV. THE COLLAPSE OF SPATIOTEMPORAL CHAOS
IN THE PRESENCE OF SPATIALLY
INHOMOGENEOUS NOISE

Spatially inhomogeneous dichotomous Markov noise
clearly influences the collapse of spatiotemporal chaos. Fig-
ure 7 shows that the average lifetime of spatiotemporal chaos
first increases (up to several orders of magnitude) with in-
creasing noise amplitude Q until it reaches a maximum
value. Then the average lifetime decreases and drops below
the lifetime for the noise-free dynamics. The delay of the
collapse is more drastic and it happens over a larger range of
noise amplitudes when the degree of spatial noise inhomo-
geneity is enlarged. For example, if 5% of neighboring net-
work nodes are subject to the same noise realization (r
=20) the maximum average lifetime is (T)=55 550+55 630
(Fig. 7), whereas if 25% of neighboring network nodes are
subject to the same noise realization (r=4) the maximum
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average lifetime is (T)=7047+7665. In both cases the col-
lapse is clearly delayed in comparison to the noise-free dy-
namics, where (T)=1688+1710.

The presence of a maximum in the average transient time
(T) in Fig. 7 is caused by two competing mechanisms. (1)
(T) increases with noise amplitude Q: Larger noise ampli-
tudes increase the spatial inhomogeneity of resource a, and
species concentration b, throughout the network. This makes
it harder for the system to reach the quasihomogeneous state,
which was identified as an immediate precursor of the col-
lapse [5]. In addition, additive spatially inhomogeneous
noise directly enters into the Laplacian coupling term,
A,(&,,) #0 for several n in Eq. (1), with the possibility to
enlarge the coupling-induced perturbation that a trajectory at
node n is experiencing. For spatially homogeneous noise,
however, A, (¢,,)=0 for all n. A nonvanishing A,(§,,) in-
creases the spatial inhomogeneity in the network, and can
make the perturbation onto a trajectory super-threshold to
sustain spatiotemporal chaos [35]. (2) (T) decreases with
noise amplitude Q: Larger noise amplitudes reduce the aver-
age residence time of a trajectory in the neighborhood of the
unstable focus. Noise patterns with predominantly positive
(or negative) events often move a trajectory away from S/ on
either side of the focus, which promotes the collapse process
as discussed in Sec. III. The decay of (T) with Q in Fig. 7
exists for the entire amplitude range for spatially homoge-
neous noise (r=1), but is shifted towards larger noise ampli-
tudes for spatially inhomogeneous noise (r>1) due to (1).

Figure 8 shows that spatially inhomogeneous dichoto-
mous Markov noise alters the spatiotemporal pattern. With
increasing noise amplitude more and larger regions of local
extinction arise, and their triangular shapes become more
distorted. The arguments that more local extinctions delay
the collapse process, whereas larger regions of local extinc-
tions advance the collapse process, as discussed in Sec. III,
apply for spatially inhomogeneous noise as well and are con-
sistent with the decay of (T) with Q in Fig. 7. Additional
analysis shows that the frequency distribution of lifetimes for
a given noise amplitude follows an exponential distribution
in the presence of spatially inhomogeneous noise, as is the
case for spatially homogeneous noise in Fig. 4.

V. CONCLUSIONS

Dynamical noise clearly influences the collapse of spa-
tiotemporal chaos to a stable asymptotic state in a regular
network of Gray-Scott excitable elements. Spatially uniform
dichotomous Markov noise significantly decreases the aver-
age lifetime of spatiotemporal chaos with increasing noise
amplitude. Spatially inhomogeneous dichotomous Markov
noise can drastically delay the collapse of spatiotemporal
chaos; the transient lifetime can increase up to several orders
of magnitude with increasing noise amplitude. Above a criti-
cal noise amplitude, however, the collapse is also advanced
for spatially inhomogeneous noise, and the average lifetime
of spatiotemporal chaos drops below the lifetime of the
noise-free dynamics. The advancement of the collapse for
spatially homogeneous and spatially inhomogeneous noise is
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n

FIG. 8. Spatiotemporal pattern of reactant concentration a at network nodes n in the presence of spatially inhomogeneous dichotomous
noise (r=20). Noise amplitudes are increasing from left to right: (a) 9=0.0001, (b) 9=0.005, and (c) Q=0.009. The network has N=120
nodes, and the simulation time is A¢=450. A concentration of a=1 (a=0) is represented in white (black). Other parameters and simulation

procedures are the same as in Fig. 2.

due to certain noise patterns that enlarge regions of local
collapse to increase the probability for a collapse of the size
of the network.

The asymptotic stability of extended systems with diffu-
sive coupling is difficult to determine, since the average life-
time typically increases exponentially with the size of the
network or medium [3-5,9,13,14]. For the regular network
of Gray-Scott excitable elements we find that this exponen-
tial increase still holds in the presence of noise, but with a
more reduced growth constant than for the noise free dynam-
ics.

Transient spatiotemporal chaos exists in other reaction-
diffusion systems or diffusively coupled map lattices that all
have a stable state in the homogeneous system [3-5,9]. Simi-
larities in these models motivate a comparative study of the
effect of noise on the collapse of spatiotemporal chaos. The
Baer-Eiswirth model [36], a realistic surface reaction model
for the oxidation of CO on Pt, has common steady state
features with the Gray-Scott model in the parameter regime
of spatiotemporal chaos. The origin of spatiotemporal chaos,
however, was reported to be different in these two models; a
backfiring instability was identified in the Baer-Eiswirth
model [36], and a Silnikov-like orbit was identified in the
Gray-Scott model [29]. Preliminary results suggest that spa-
tially homogeneous noise can also advance the collapse of
spatiotemporal chaos in the Baer-Eiswirth model. We expect

that this is due to the existence of an unstable focus in both
systems, since earlier studies have shown that dynamical
noise decreases the average residence time of a trajectory in
the neighborhood of an unstable steady state [34].

Transient spatiotemporal chaos is also discussed as a
source for species extinction in theoretical ecologies [10,11].
An increasing interest in spatiotemporal ecological dynamics
[37] stems from the identification of spatial symmetry [38] as
a possible cause of extinction, although the origin of spatial
synchronization is still under debate [39]. The Gray-Scott
excitable dynamics in Eq. (1) phenomenologically mimics an
ecological system, as it captures major ecological mecha-
nisms like density-dependent species reproduction, competi-
tion for resource, a natural exponential species decay, and
diffusion-based dispersal of species and resource. In realistic
situations the ubiquitous presence of noise introduces further
difficulties to determine the asymptotic stability of complex
spatiotemporal ecologies. In this model dynamical noise can
clearly delay, but also clearly advance the extinction of spe-
cies depending on the amplitude and the degree of spatial
inhomogeneity of the noise.
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